'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^2))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a__f(0()) -> cons(0(), f(s(0())))
     , a__f(s(0())) -> a__f(a__p(s(0())))
     , a__p(s(0())) -> 0()
     , mark(f(X)) -> a__f(mark(X))
     , mark(p(X)) -> a__p(mark(X))
     , mark(0()) -> 0()
     , mark(cons(X1, X2)) -> cons(mark(X1), X2)
     , mark(s(X)) -> s(mark(X))
     , a__f(X) -> f(X)
     , a__p(X) -> p(X)}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a__f^#(0()) -> c_0()
    , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))
    , a__p^#(s(0())) -> c_2()
    , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
    , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
    , mark^#(0()) -> c_5()
    , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
    , mark^#(s(X)) -> c_7(mark^#(X))
    , a__f^#(X) -> c_8()
    , a__p^#(X) -> c_9()}
  
  The usable rules are:
   {  a__p(s(0())) -> 0()
    , mark(f(X)) -> a__f(mark(X))
    , mark(p(X)) -> a__p(mark(X))
    , mark(0()) -> 0()
    , mark(cons(X1, X2)) -> cons(mark(X1), X2)
    , mark(s(X)) -> s(mark(X))
    , a__p(X) -> p(X)
    , a__f(0()) -> cons(0(), f(s(0())))
    , a__f(s(0())) -> a__f(a__p(s(0())))
    , a__f(X) -> f(X)}
  
  The estimated dependency graph contains the following edges:
   {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
     ==> {a__f^#(X) -> c_8()}
   {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
     ==> {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
   {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
     ==> {a__f^#(0()) -> c_0()}
   {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
     ==> {a__f^#(X) -> c_8()}
   {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
     ==> {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
   {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
     ==> {a__f^#(0()) -> c_0()}
   {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
     ==> {a__p^#(X) -> c_9()}
   {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
     ==> {a__p^#(s(0())) -> c_2()}
   {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
     ==> {mark^#(s(X)) -> c_7(mark^#(X))}
   {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
     ==> {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
   {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
     ==> {mark^#(0()) -> c_5()}
   {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
     ==> {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
   {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
     ==> {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
   {mark^#(s(X)) -> c_7(mark^#(X))}
     ==> {mark^#(s(X)) -> c_7(mark^#(X))}
   {mark^#(s(X)) -> c_7(mark^#(X))}
     ==> {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
   {mark^#(s(X)) -> c_7(mark^#(X))}
     ==> {mark^#(0()) -> c_5()}
   {mark^#(s(X)) -> c_7(mark^#(X))}
     ==> {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
   {mark^#(s(X)) -> c_7(mark^#(X))}
     ==> {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
  
  We consider the following path(s):
   1) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(X) -> c_8()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(s(0())) -> 0()
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^2))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(s(0())) -> 0()
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__f^#(X) -> c_8()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(0()) -> 0()
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(0()) -> 0()
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , a__f^#(X) -> c_8()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {  mark(0()) -> 0()
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__p(s(0())) -> 0()
               , mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [4]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(p(X)) -> a__p(mark(X))}
            and weakly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark(0()) -> 0()
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(p(X)) -> a__p(mark(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(f(X)) -> a__f(mark(X))}
            and weakly orienting the rules
            {  mark(p(X)) -> a__p(mark(X))
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark(0()) -> 0()
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(f(X)) -> a__f(mark(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [12]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  mark(f(X)) -> a__f(mark(X))
             , mark(p(X)) -> a__p(mark(X))
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark(0()) -> 0()
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  f(x1) = [1] x1 + [15]
                  s(x1) = [1] x1 + [1]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [15]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^2))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__p(X) -> p(X)
                 , a__f(0()) -> cons(0(), f(s(0())))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f(X) -> f(X)}
              Weak Rules:
                {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark(f(X)) -> a__f(mark(X))
                 , mark(p(X)) -> a__p(mark(X))
                 , a__p(s(0())) -> 0()
                 , mark^#(s(X)) -> c_7(mark^#(X))
                 , mark(0()) -> 0()
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , a__f^#(X) -> c_8()}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^2))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__p(X) -> p(X)
                   , a__f(0()) -> cons(0(), f(s(0())))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f(X) -> f(X)}
                Weak Rules:
                  {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , mark(f(X)) -> a__f(mark(X))
                   , mark(p(X)) -> a__p(mark(X))
                   , a__p(s(0())) -> 0()
                   , mark^#(s(X)) -> c_7(mark^#(X))
                   , mark(0()) -> 0()
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , a__f^#(X) -> c_8()}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^2))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__p(X) -> p(X)
                     , a__f(s(0())) -> a__f(a__p(s(0())))}
                  Weak Rules:
                    {  mark(s(X)) -> s(mark(X))
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark(f(X)) -> a__f(mark(X))
                     , mark(p(X)) -> a__p(mark(X))
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))
                     , mark(0()) -> 0()
                     , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                     , a__f^#(X) -> c_8()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^2))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__p(X) -> p(X)
                       , a__f(s(0())) -> a__f(a__p(s(0())))}
                    Weak Rules:
                      {  mark(s(X)) -> s(mark(X))
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark(f(X)) -> a__f(mark(X))
                       , mark(p(X)) -> a__p(mark(X))
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))
                       , mark(0()) -> 0()
                       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                       , a__f^#(X) -> c_8()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^2))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__p(X) -> p(X)
                            , a__f(s(0())) -> a__f(a__p(s(0())))}
                         Weak Rules:
                           {  mark(s(X)) -> s(mark(X))
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark(f(X)) -> a__f(mark(X))
                            , mark(p(X)) -> a__p(mark(X))
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))
                            , mark(0()) -> 0()
                            , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                            , a__f^#(X) -> c_8()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^2))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__p(X) -> p(X)
                              , a__f(s(0())) -> a__f(a__p(s(0())))}
                           Weak Rules:
                             {  mark(s(X)) -> s(mark(X))
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark(f(X)) -> a__f(mark(X))
                              , mark(p(X)) -> a__p(mark(X))
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))
                              , mark(0()) -> 0()
                              , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                              , a__f^#(X) -> c_8()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1 5] x1 + [0]
                                       [0 0]      [2]
                            0() = [0]
                                  [6]
                            cons(x1, x2) = [1 0] x1 + [1 5] x2 + [1]
                                           [0 0]      [0 0]      [0]
                            f(x1) = [1 1] x1 + [0]
                                    [0 0]      [2]
                            s(x1) = [1 1] x1 + [0]
                                    [0 1]      [6]
                            a__p(x1) = [1 0] x1 + [2]
                                       [0 0]      [7]
                            mark(x1) = [5 0] x1 + [0]
                                       [0 1]      [0]
                            p(x1) = [1 0] x1 + [1]
                                    [0 0]      [7]
                            a__f^#(x1) = [1 0] x1 + [0]
                                         [0 0]      [0]
                            c_0() = [0]
                                    [0]
                            c_1(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                            a__p^#(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            c_2() = [0]
                                    [0]
                            mark^#(x1) = [5 0] x1 + [0]
                                         [2 6]      [4]
                            c_3(x1) = [1 0] x1 + [0]
                                      [0 0]      [1]
                            c_4(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                            c_5() = [0]
                                    [0]
                            c_6(x1) = [1 0] x1 + [1]
                                      [0 0]      [1]
                            c_7(x1) = [1 0] x1 + [0]
                                      [0 1]      [0]
                            c_8() = [0]
                                    [0]
                            c_9() = [0]
                                    [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(s(X)) -> s(mark(X))
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)}
                  Weak Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__p(X) -> p(X)
                     , a__f(s(0())) -> a__f(a__p(s(0())))
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark(f(X)) -> a__f(mark(X))
                     , mark(p(X)) -> a__p(mark(X))
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))
                     , mark(0()) -> 0()
                     , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                     , a__f^#(X) -> c_8()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(s(X)) -> s(mark(X))
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)}
                    Weak Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__p(X) -> p(X)
                       , a__f(s(0())) -> a__f(a__p(s(0())))
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark(f(X)) -> a__f(mark(X))
                       , mark(p(X)) -> a__p(mark(X))
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))
                       , mark(0()) -> 0()
                       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                       , a__f^#(X) -> c_8()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(s(X)) -> s(mark(X))
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)}
                         Weak Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__p(X) -> p(X)
                            , a__f(s(0())) -> a__f(a__p(s(0())))
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark(f(X)) -> a__f(mark(X))
                            , mark(p(X)) -> a__p(mark(X))
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))
                            , mark(0()) -> 0()
                            , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                            , a__f^#(X) -> c_8()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(s(X)) -> s(mark(X))
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)}
                           Weak Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__p(X) -> p(X)
                              , a__f(s(0())) -> a__f(a__p(s(0())))
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark(f(X)) -> a__f(mark(X))
                              , mark(p(X)) -> a__p(mark(X))
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))
                              , mark(0()) -> 0()
                              , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                              , a__f^#(X) -> c_8()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1] x1 + [4]
                            0() = [0]
                            cons(x1, x2) = [1] x1 + [1] x2 + [0]
                            f(x1) = [1] x1 + [2]
                            s(x1) = [1] x1 + [1]
                            a__p(x1) = [1] x1 + [0]
                            mark(x1) = [4] x1 + [4]
                            p(x1) = [1] x1 + [0]
                            a__f^#(x1) = [1] x1 + [0]
                            c_0() = [0]
                            c_1(x1) = [0] x1 + [0]
                            a__p^#(x1) = [0] x1 + [0]
                            c_2() = [0]
                            mark^#(x1) = [4] x1 + [0]
                            c_3(x1) = [1] x1 + [0]
                            c_4(x1) = [0] x1 + [0]
                            c_5() = [0]
                            c_6(x1) = [1] x1 + [0]
                            c_7(x1) = [1] x1 + [0]
                            c_8() = [0]
                            c_9() = [0]
      
   2) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
       , a__p^#(X) -> c_9()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(s(0())) -> 0()
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^2))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(s(0())) -> 0()
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__p^#(X) -> c_9()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(0()) -> 0()
             , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , a__p^#(X) -> c_9()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(0()) -> 0()
               , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
               , a__p^#(X) -> c_9()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {  mark(0()) -> 0()
             , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , a__p^#(X) -> c_9()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__p(s(0())) -> 0()
               , mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [4]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(p(X)) -> a__p(mark(X))}
            and weakly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark(0()) -> 0()
             , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , a__p^#(X) -> c_9()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(p(X)) -> a__p(mark(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [6]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(f(X)) -> a__f(mark(X))}
            and weakly orienting the rules
            {  mark(p(X)) -> a__p(mark(X))
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark(0()) -> 0()
             , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , a__p^#(X) -> c_9()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(f(X)) -> a__f(mark(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [12]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [9]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [3]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  mark(f(X)) -> a__f(mark(X))
             , mark(p(X)) -> a__p(mark(X))
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark(0()) -> 0()
             , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , a__p^#(X) -> c_9()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  f(x1) = [1] x1 + [15]
                  s(x1) = [1] x1 + [1]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [2]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [15]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^2))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__p(X) -> p(X)
                 , a__f(0()) -> cons(0(), f(s(0())))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f(X) -> f(X)}
              Weak Rules:
                {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark(f(X)) -> a__f(mark(X))
                 , mark(p(X)) -> a__p(mark(X))
                 , a__p(s(0())) -> 0()
                 , mark^#(s(X)) -> c_7(mark^#(X))
                 , mark(0()) -> 0()
                 , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                 , a__p^#(X) -> c_9()}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^2))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__p(X) -> p(X)
                   , a__f(0()) -> cons(0(), f(s(0())))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f(X) -> f(X)}
                Weak Rules:
                  {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , mark(f(X)) -> a__f(mark(X))
                   , mark(p(X)) -> a__p(mark(X))
                   , a__p(s(0())) -> 0()
                   , mark^#(s(X)) -> c_7(mark^#(X))
                   , mark(0()) -> 0()
                   , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                   , a__p^#(X) -> c_9()}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^2))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__p(X) -> p(X)
                     , a__f(s(0())) -> a__f(a__p(s(0())))}
                  Weak Rules:
                    {  mark(s(X)) -> s(mark(X))
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark(f(X)) -> a__f(mark(X))
                     , mark(p(X)) -> a__p(mark(X))
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))
                     , mark(0()) -> 0()
                     , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                     , a__p^#(X) -> c_9()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^2))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__p(X) -> p(X)
                       , a__f(s(0())) -> a__f(a__p(s(0())))}
                    Weak Rules:
                      {  mark(s(X)) -> s(mark(X))
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark(f(X)) -> a__f(mark(X))
                       , mark(p(X)) -> a__p(mark(X))
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))
                       , mark(0()) -> 0()
                       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                       , a__p^#(X) -> c_9()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^2))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__p(X) -> p(X)
                            , a__f(s(0())) -> a__f(a__p(s(0())))}
                         Weak Rules:
                           {  mark(s(X)) -> s(mark(X))
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark(f(X)) -> a__f(mark(X))
                            , mark(p(X)) -> a__p(mark(X))
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))
                            , mark(0()) -> 0()
                            , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                            , a__p^#(X) -> c_9()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^2))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__p(X) -> p(X)
                              , a__f(s(0())) -> a__f(a__p(s(0())))}
                           Weak Rules:
                             {  mark(s(X)) -> s(mark(X))
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark(f(X)) -> a__f(mark(X))
                              , mark(p(X)) -> a__p(mark(X))
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))
                              , mark(0()) -> 0()
                              , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                              , a__p^#(X) -> c_9()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1 4] x1 + [1]
                                       [0 1]      [5]
                            0() = [0]
                                  [2]
                            cons(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                                           [0 0]      [0 0]      [4]
                            f(x1) = [1 1] x1 + [1]
                                    [0 1]      [5]
                            s(x1) = [1 0] x1 + [0]
                                    [0 1]      [4]
                            a__p(x1) = [1 1] x1 + [1]
                                       [0 0]      [4]
                            mark(x1) = [4 1] x1 + [0]
                                       [0 1]      [2]
                            p(x1) = [1 1] x1 + [0]
                                    [0 0]      [3]
                            a__f^#(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            c_0() = [0]
                                    [0]
                            c_1(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                            a__p^#(x1) = [1 0] x1 + [3]
                                         [0 0]      [0]
                            c_2() = [0]
                                    [0]
                            mark^#(x1) = [4 2] x1 + [1]
                                         [0 0]      [2]
                            c_3(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                            c_4(x1) = [1 0] x1 + [2]
                                      [0 0]      [1]
                            c_5() = [0]
                                    [0]
                            c_6(x1) = [1 4] x1 + [0]
                                      [0 0]      [1]
                            c_7(x1) = [1 0] x1 + [0]
                                      [0 0]      [0]
                            c_8() = [0]
                                    [0]
                            c_9() = [0]
                                    [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(s(X)) -> s(mark(X))
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)}
                  Weak Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__p(X) -> p(X)
                     , a__f(s(0())) -> a__f(a__p(s(0())))
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark(f(X)) -> a__f(mark(X))
                     , mark(p(X)) -> a__p(mark(X))
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))
                     , mark(0()) -> 0()
                     , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                     , a__p^#(X) -> c_9()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(s(X)) -> s(mark(X))
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)}
                    Weak Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__p(X) -> p(X)
                       , a__f(s(0())) -> a__f(a__p(s(0())))
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark(f(X)) -> a__f(mark(X))
                       , mark(p(X)) -> a__p(mark(X))
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))
                       , mark(0()) -> 0()
                       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                       , a__p^#(X) -> c_9()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(s(X)) -> s(mark(X))
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)}
                         Weak Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__p(X) -> p(X)
                            , a__f(s(0())) -> a__f(a__p(s(0())))
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark(f(X)) -> a__f(mark(X))
                            , mark(p(X)) -> a__p(mark(X))
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))
                            , mark(0()) -> 0()
                            , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                            , a__p^#(X) -> c_9()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(s(X)) -> s(mark(X))
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)}
                           Weak Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__p(X) -> p(X)
                              , a__f(s(0())) -> a__f(a__p(s(0())))
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark(f(X)) -> a__f(mark(X))
                              , mark(p(X)) -> a__p(mark(X))
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))
                              , mark(0()) -> 0()
                              , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                              , a__p^#(X) -> c_9()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1] x1 + [4]
                            0() = [0]
                            cons(x1, x2) = [1] x1 + [1] x2 + [0]
                            f(x1) = [1] x1 + [2]
                            s(x1) = [1] x1 + [1]
                            a__p(x1) = [1] x1 + [0]
                            mark(x1) = [4] x1 + [0]
                            p(x1) = [1] x1 + [0]
                            a__f^#(x1) = [0] x1 + [0]
                            c_0() = [0]
                            c_1(x1) = [0] x1 + [0]
                            a__p^#(x1) = [1] x1 + [2]
                            c_2() = [0]
                            mark^#(x1) = [4] x1 + [3]
                            c_3(x1) = [0] x1 + [0]
                            c_4(x1) = [1] x1 + [0]
                            c_5() = [0]
                            c_6(x1) = [1] x1 + [0]
                            c_7(x1) = [1] x1 + [0]
                            c_8() = [0]
                            c_9() = [0]
      
   3) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(s(0())) -> 0()
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^2))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(s(0())) -> 0()
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(0()) -> 0()
               , a__p(s(0())) -> 0()
               , mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [3]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  mark(p(X)) -> a__p(mark(X))
             , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(p(X)) -> a__p(mark(X))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [2]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [6]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [6]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(f(X)) -> a__f(mark(X))}
            and weakly orienting the rules
            {  mark(p(X)) -> a__p(mark(X))
             , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(f(X)) -> a__f(mark(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [2]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^2))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__p(X) -> p(X)
                 , a__f(0()) -> cons(0(), f(s(0())))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f(X) -> f(X)}
              Weak Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(p(X)) -> a__p(mark(X))
                 , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , mark(0()) -> 0()
                 , a__p(s(0())) -> 0()
                 , mark^#(s(X)) -> c_7(mark^#(X))}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^2))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__p(X) -> p(X)
                   , a__f(0()) -> cons(0(), f(s(0())))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f(X) -> f(X)}
                Weak Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(p(X)) -> a__p(mark(X))
                   , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , mark(0()) -> 0()
                   , a__p(s(0())) -> 0()
                   , mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^2))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__p(X) -> p(X)
                     , a__f(s(0())) -> a__f(a__p(s(0())))}
                  Weak Rules:
                    {  mark(s(X)) -> s(mark(X))
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)
                     , mark(f(X)) -> a__f(mark(X))
                     , mark(p(X)) -> a__p(mark(X))
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                     , mark(0()) -> 0()
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^2))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__p(X) -> p(X)
                       , a__f(s(0())) -> a__f(a__p(s(0())))}
                    Weak Rules:
                      {  mark(s(X)) -> s(mark(X))
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)
                       , mark(f(X)) -> a__f(mark(X))
                       , mark(p(X)) -> a__p(mark(X))
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                       , mark(0()) -> 0()
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^2))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__p(X) -> p(X)
                            , a__f(s(0())) -> a__f(a__p(s(0())))}
                         Weak Rules:
                           {  mark(s(X)) -> s(mark(X))
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)
                            , mark(f(X)) -> a__f(mark(X))
                            , mark(p(X)) -> a__p(mark(X))
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                            , mark(0()) -> 0()
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^2))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__p(X) -> p(X)
                              , a__f(s(0())) -> a__f(a__p(s(0())))}
                           Weak Rules:
                             {  mark(s(X)) -> s(mark(X))
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)
                              , mark(f(X)) -> a__f(mark(X))
                              , mark(p(X)) -> a__p(mark(X))
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                              , mark(0()) -> 0()
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1 6] x1 + [1]
                                       [0 0]      [1]
                            0() = [0]
                                  [6]
                            cons(x1, x2) = [1 0] x1 + [1 2] x2 + [1]
                                           [0 0]      [0 0]      [1]
                            f(x1) = [1 3] x1 + [1]
                                    [0 0]      [1]
                            s(x1) = [1 0] x1 + [0]
                                    [0 1]      [5]
                            a__p(x1) = [1 0] x1 + [4]
                                       [0 0]      [6]
                            mark(x1) = [2 0] x1 + [0]
                                       [0 1]      [0]
                            p(x1) = [1 0] x1 + [2]
                                    [0 0]      [6]
                            a__f^#(x1) = [1 0] x1 + [0]
                                         [0 0]      [0]
                            c_0() = [0]
                                    [0]
                            c_1(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                            a__p^#(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            c_2() = [0]
                                    [0]
                            mark^#(x1) = [2 0] x1 + [1]
                                         [0 0]      [0]
                            c_3(x1) = [1 0] x1 + [0]
                                      [0 0]      [0]
                            c_4(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                            c_5() = [0]
                                    [0]
                            c_6(x1) = [1 0] x1 + [0]
                                      [0 0]      [0]
                            c_7(x1) = [1 0] x1 + [0]
                                      [0 0]      [0]
                            c_8() = [0]
                                    [0]
                            c_9() = [0]
                                    [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(s(X)) -> s(mark(X))
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)}
                  Weak Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__p(X) -> p(X)
                     , a__f(s(0())) -> a__f(a__p(s(0())))
                     , mark(f(X)) -> a__f(mark(X))
                     , mark(p(X)) -> a__p(mark(X))
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                     , mark(0()) -> 0()
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(s(X)) -> s(mark(X))
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)}
                    Weak Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__p(X) -> p(X)
                       , a__f(s(0())) -> a__f(a__p(s(0())))
                       , mark(f(X)) -> a__f(mark(X))
                       , mark(p(X)) -> a__p(mark(X))
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                       , mark(0()) -> 0()
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(s(X)) -> s(mark(X))
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)}
                         Weak Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__p(X) -> p(X)
                            , a__f(s(0())) -> a__f(a__p(s(0())))
                            , mark(f(X)) -> a__f(mark(X))
                            , mark(p(X)) -> a__p(mark(X))
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                            , mark(0()) -> 0()
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(s(X)) -> s(mark(X))
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)}
                           Weak Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__p(X) -> p(X)
                              , a__f(s(0())) -> a__f(a__p(s(0())))
                              , mark(f(X)) -> a__f(mark(X))
                              , mark(p(X)) -> a__p(mark(X))
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                              , mark(0()) -> 0()
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1] x1 + [5]
                            0() = [0]
                            cons(x1, x2) = [1] x1 + [1] x2 + [0]
                            f(x1) = [1] x1 + [2]
                            s(x1) = [1] x1 + [1]
                            a__p(x1) = [1] x1 + [0]
                            mark(x1) = [4] x1 + [4]
                            p(x1) = [1] x1 + [0]
                            a__f^#(x1) = [1] x1 + [1]
                            c_0() = [0]
                            c_1(x1) = [0] x1 + [0]
                            a__p^#(x1) = [0] x1 + [0]
                            c_2() = [0]
                            mark^#(x1) = [4] x1 + [1]
                            c_3(x1) = [1] x1 + [2]
                            c_4(x1) = [0] x1 + [0]
                            c_5() = [0]
                            c_6(x1) = [1] x1 + [0]
                            c_7(x1) = [1] x1 + [0]
                            c_8() = [0]
                            c_9() = [0]
      
   4) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
       , a__p^#(s(0())) -> c_2()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(s(0())) -> 0()
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^2))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(s(0())) -> 0()
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__p^#(s(0())) -> c_2()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__p^#(s(0())) -> c_2()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(0()) -> 0()
               , a__p(s(0())) -> 0()
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__p^#(s(0())) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [10]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__p(X) -> p(X)}
            and weakly orienting the rules
            {  mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__p^#(s(0())) -> c_2()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__p(X) -> p(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [14]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [10]
                  a__p(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
            and weakly orienting the rules
            {  a__p(X) -> p(X)
             , mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__p^#(s(0())) -> c_2()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [3]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [11]
                  c_7(x1) = [1] x1 + [8]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark(f(X)) -> a__f(mark(X))}
            and weakly orienting the rules
            {  mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , a__p(X) -> p(X)
             , mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__p^#(s(0())) -> c_2()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(f(X)) -> a__f(mark(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [2]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [6]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [8]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  mark(f(X)) -> a__f(mark(X))
             , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , a__p(X) -> p(X)
             , mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__p^#(s(0())) -> c_2()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [2]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  f(x1) = [1] x1 + [14]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [15]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^2))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(p(X)) -> a__p(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__f(0()) -> cons(0(), f(s(0())))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f(X) -> f(X)}
              Weak Rules:
                {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark(f(X)) -> a__f(mark(X))
                 , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                 , a__p(X) -> p(X)
                 , mark(0()) -> 0()
                 , a__p(s(0())) -> 0()
                 , mark^#(s(X)) -> c_7(mark^#(X))
                 , a__p^#(s(0())) -> c_2()}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^2))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(p(X)) -> a__p(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__f(0()) -> cons(0(), f(s(0())))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f(X) -> f(X)}
                Weak Rules:
                  {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , mark(f(X)) -> a__f(mark(X))
                   , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                   , a__p(X) -> p(X)
                   , mark(0()) -> 0()
                   , a__p(s(0())) -> 0()
                   , mark^#(s(X)) -> c_7(mark^#(X))
                   , a__p^#(s(0())) -> c_2()}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^2))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(p(X)) -> a__p(mark(X))
                     , mark(s(X)) -> s(mark(X))
                     , a__f(s(0())) -> a__f(a__p(s(0())))}
                  Weak Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark(f(X)) -> a__f(mark(X))
                     , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                     , a__p(X) -> p(X)
                     , mark(0()) -> 0()
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))
                     , a__p^#(s(0())) -> c_2()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^2))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(p(X)) -> a__p(mark(X))
                       , mark(s(X)) -> s(mark(X))
                       , a__f(s(0())) -> a__f(a__p(s(0())))}
                    Weak Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark(f(X)) -> a__f(mark(X))
                       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                       , a__p(X) -> p(X)
                       , mark(0()) -> 0()
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))
                       , a__p^#(s(0())) -> c_2()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^2))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(p(X)) -> a__p(mark(X))
                            , mark(s(X)) -> s(mark(X))
                            , a__f(s(0())) -> a__f(a__p(s(0())))}
                         Weak Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark(f(X)) -> a__f(mark(X))
                            , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                            , a__p(X) -> p(X)
                            , mark(0()) -> 0()
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))
                            , a__p^#(s(0())) -> c_2()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^2))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(p(X)) -> a__p(mark(X))
                              , mark(s(X)) -> s(mark(X))
                              , a__f(s(0())) -> a__f(a__p(s(0())))}
                           Weak Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark(f(X)) -> a__f(mark(X))
                              , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                              , a__p(X) -> p(X)
                              , mark(0()) -> 0()
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))
                              , a__p^#(s(0())) -> c_2()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1 0 1] x1 + [0]
                                       [0 1 1]      [1]
                                       [0 0 0]      [1]
                            0() = [0]
                                  [0]
                                  [0]
                            cons(x1, x2) = [1 0 1] x1 + [1 0 0] x2 + [0]
                                           [0 1 1]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0]
                            f(x1) = [1 0 0] x1 + [0]
                                    [0 1 1]      [1]
                                    [0 0 0]      [1]
                            s(x1) = [1 0 0] x1 + [0]
                                    [0 1 0]      [1]
                                    [0 0 0]      [1]
                            a__p(x1) = [1 0 0] x1 + [0]
                                       [0 1 0]      [1]
                                       [0 0 0]      [0]
                            mark(x1) = [1 1 0] x1 + [0]
                                       [0 1 0]      [0]
                                       [0 0 1]      [0]
                            p(x1) = [1 0 0] x1 + [0]
                                    [0 1 0]      [1]
                                    [0 0 0]      [0]
                            a__f^#(x1) = [0 0 0] x1 + [0]
                                         [0 0 0]      [0]
                                         [0 0 0]      [0]
                            c_0() = [0]
                                    [0]
                                    [0]
                            c_1(x1) = [0 0 0] x1 + [0]
                                      [0 0 0]      [0]
                                      [0 0 0]      [0]
                            a__p^#(x1) = [1 0 0] x1 + [0]
                                         [0 0 1]      [0]
                                         [0 0 0]      [0]
                            c_2() = [0]
                                    [0]
                                    [0]
                            mark^#(x1) = [1 1 0] x1 + [1]
                                         [1 1 0]      [1]
                                         [0 0 0]      [0]
                            c_3(x1) = [0 0 0] x1 + [0]
                                      [0 0 0]      [0]
                                      [0 0 0]      [0]
                            c_4(x1) = [1 0 0] x1 + [1]
                                      [0 0 0]      [1]
                                      [0 0 0]      [0]
                            c_5() = [0]
                                    [0]
                                    [0]
                            c_6(x1) = [1 0 0] x1 + [0]
                                      [0 1 0]      [0]
                                      [0 0 0]      [0]
                            c_7(x1) = [1 0 0] x1 + [0]
                                      [0 1 0]      [0]
                                      [0 0 0]      [0]
                            c_8() = [0]
                                    [0]
                                    [0]
                            c_9() = [0]
                                    [0]
                                    [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)}
                  Weak Rules:
                    {  mark(p(X)) -> a__p(mark(X))
                     , mark(s(X)) -> s(mark(X))
                     , a__f(s(0())) -> a__f(a__p(s(0())))
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark(f(X)) -> a__f(mark(X))
                     , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                     , a__p(X) -> p(X)
                     , mark(0()) -> 0()
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))
                     , a__p^#(s(0())) -> c_2()}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)}
                    Weak Rules:
                      {  mark(p(X)) -> a__p(mark(X))
                       , mark(s(X)) -> s(mark(X))
                       , a__f(s(0())) -> a__f(a__p(s(0())))
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark(f(X)) -> a__f(mark(X))
                       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                       , a__p(X) -> p(X)
                       , mark(0()) -> 0()
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))
                       , a__p^#(s(0())) -> c_2()}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)}
                         Weak Rules:
                           {  mark(p(X)) -> a__p(mark(X))
                            , mark(s(X)) -> s(mark(X))
                            , a__f(s(0())) -> a__f(a__p(s(0())))
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark(f(X)) -> a__f(mark(X))
                            , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                            , a__p(X) -> p(X)
                            , mark(0()) -> 0()
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))
                            , a__p^#(s(0())) -> c_2()}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)}
                           Weak Rules:
                             {  mark(p(X)) -> a__p(mark(X))
                              , mark(s(X)) -> s(mark(X))
                              , a__f(s(0())) -> a__f(a__p(s(0())))
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark(f(X)) -> a__f(mark(X))
                              , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                              , a__p(X) -> p(X)
                              , mark(0()) -> 0()
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))
                              , a__p^#(s(0())) -> c_2()}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1] x1 + [4]
                            0() = [0]
                            cons(x1, x2) = [1] x1 + [1] x2 + [1]
                            f(x1) = [1] x1 + [1]
                            s(x1) = [1] x1 + [1]
                            a__p(x1) = [1] x1 + [0]
                            mark(x1) = [4] x1 + [4]
                            p(x1) = [1] x1 + [0]
                            a__f^#(x1) = [0] x1 + [0]
                            c_0() = [0]
                            c_1(x1) = [0] x1 + [0]
                            a__p^#(x1) = [1] x1 + [0]
                            c_2() = [0]
                            mark^#(x1) = [4] x1 + [5]
                            c_3(x1) = [0] x1 + [0]
                            c_4(x1) = [1] x1 + [1]
                            c_5() = [0]
                            c_6(x1) = [1] x1 + [0]
                            c_7(x1) = [1] x1 + [0]
                            c_8() = [0]
                            c_9() = [0]
      
   5) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(s(0())) -> 0()
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^2))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(s(0())) -> 0()
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(0()) -> 0()
               , a__p(s(0())) -> 0()
               , mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [3]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
            and weakly orienting the rules
            {  mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(p(X)) -> c_4(a__p^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  mark(f(X)) -> a__f(mark(X))
             , a__p(X) -> p(X)
             , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  mark^#(p(X)) -> c_4(a__p^#(mark(X)))
             , mark(0()) -> 0()
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(f(X)) -> a__f(mark(X))
               , a__p(X) -> p(X)
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [2]
                  f(x1) = [1] x1 + [1]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [6]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [4]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [6]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^2))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(p(X)) -> a__p(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__f(0()) -> cons(0(), f(s(0())))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f(X) -> f(X)}
              Weak Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , a__p(X) -> p(X)
                 , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                 , mark(0()) -> 0()
                 , a__p(s(0())) -> 0()
                 , mark^#(s(X)) -> c_7(mark^#(X))}
            
            Details:         
              The problem was solved by processor 'combine':
              'combine'
              ---------
              Answer:           YES(?,O(n^2))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(p(X)) -> a__p(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__f(0()) -> cons(0(), f(s(0())))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f(X) -> f(X)}
                Weak Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , a__p(X) -> p(X)
                   , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                   , mark(0()) -> 0()
                   , a__p(s(0())) -> 0()
                   , mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:         
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^2))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(p(X)) -> a__p(mark(X))
                     , mark(s(X)) -> s(mark(X))
                     , a__f(s(0())) -> a__f(a__p(s(0())))}
                  Weak Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)
                     , mark(f(X)) -> a__f(mark(X))
                     , a__p(X) -> p(X)
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                     , mark(0()) -> 0()
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^2))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(p(X)) -> a__p(mark(X))
                       , mark(s(X)) -> s(mark(X))
                       , a__f(s(0())) -> a__f(a__p(s(0())))}
                    Weak Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)
                       , mark(f(X)) -> a__f(mark(X))
                       , a__p(X) -> p(X)
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                       , mark(0()) -> 0()
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^2))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(p(X)) -> a__p(mark(X))
                            , mark(s(X)) -> s(mark(X))
                            , a__f(s(0())) -> a__f(a__p(s(0())))}
                         Weak Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)
                            , mark(f(X)) -> a__f(mark(X))
                            , a__p(X) -> p(X)
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                            , mark(0()) -> 0()
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^2))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(p(X)) -> a__p(mark(X))
                              , mark(s(X)) -> s(mark(X))
                              , a__f(s(0())) -> a__f(a__p(s(0())))}
                           Weak Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)
                              , mark(f(X)) -> a__f(mark(X))
                              , a__p(X) -> p(X)
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                              , mark(0()) -> 0()
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1 1 0] x1 + [1]
                                       [0 0 0]      [0]
                                       [0 1 1]      [1]
                            0() = [0]
                                  [0]
                                  [0]
                            cons(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                                           [0 0 0]      [0 0 0]      [0]
                                           [0 0 1]      [0 0 0]      [0]
                            f(x1) = [1 0 0] x1 + [1]
                                    [0 0 0]      [0]
                                    [0 0 1]      [1]
                            s(x1) = [1 0 0] x1 + [0]
                                    [0 0 0]      [1]
                                    [0 0 1]      [1]
                            a__p(x1) = [1 0 0] x1 + [0]
                                       [0 0 0]      [0]
                                       [0 0 1]      [1]
                            mark(x1) = [1 0 1] x1 + [0]
                                       [0 0 0]      [1]
                                       [1 0 1]      [0]
                            p(x1) = [1 0 0] x1 + [0]
                                    [0 0 0]      [0]
                                    [0 0 1]      [1]
                            a__f^#(x1) = [0 0 0] x1 + [0]
                                         [0 0 0]      [0]
                                         [0 0 0]      [0]
                            c_0() = [0]
                                    [0]
                                    [0]
                            c_1(x1) = [0 0 0] x1 + [0]
                                      [0 0 0]      [0]
                                      [0 0 0]      [0]
                            a__p^#(x1) = [1 0 0] x1 + [0]
                                         [0 1 0]      [1]
                                         [0 0 0]      [0]
                            c_2() = [0]
                                    [0]
                                    [0]
                            mark^#(x1) = [1 0 1] x1 + [0]
                                         [0 0 0]      [1]
                                         [0 0 1]      [1]
                            c_3(x1) = [0 0 0] x1 + [0]
                                      [0 0 0]      [0]
                                      [0 0 0]      [0]
                            c_4(x1) = [1 0 0] x1 + [1]
                                      [0 0 0]      [1]
                                      [0 1 0]      [0]
                            c_5() = [0]
                                    [0]
                                    [0]
                            c_6(x1) = [1 0 0] x1 + [0]
                                      [0 0 0]      [1]
                                      [0 0 0]      [0]
                            c_7(x1) = [1 0 0] x1 + [0]
                                      [0 1 0]      [0]
                                      [0 0 1]      [0]
                            c_8() = [0]
                                    [0]
                                    [0]
                            c_9() = [0]
                                    [0]
                                    [0]
                'sequentially if-then-else, sequentially'
                -----------------------------------------
                Answer:           YES(?,O(n^1))
                Input Problem:    innermost relative runtime-complexity with respect to
                  Strict Rules:
                    {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                     , a__f(0()) -> cons(0(), f(s(0())))
                     , a__f(X) -> f(X)}
                  Weak Rules:
                    {  mark(p(X)) -> a__p(mark(X))
                     , mark(s(X)) -> s(mark(X))
                     , a__f(s(0())) -> a__f(a__p(s(0())))
                     , mark(f(X)) -> a__f(mark(X))
                     , a__p(X) -> p(X)
                     , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                     , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                     , mark(0()) -> 0()
                     , a__p(s(0())) -> 0()
                     , mark^#(s(X)) -> c_7(mark^#(X))}
                
                Details:         
                  'if Check whether the TRS is strict trs contains single rule then fastest else fastest'
                  ---------------------------------------------------------------------------------------
                  Answer:           YES(?,O(n^1))
                  Input Problem:    innermost relative runtime-complexity with respect to
                    Strict Rules:
                      {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                       , a__f(0()) -> cons(0(), f(s(0())))
                       , a__f(X) -> f(X)}
                    Weak Rules:
                      {  mark(p(X)) -> a__p(mark(X))
                       , mark(s(X)) -> s(mark(X))
                       , a__f(s(0())) -> a__f(a__p(s(0())))
                       , mark(f(X)) -> a__f(mark(X))
                       , a__p(X) -> p(X)
                       , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                       , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                       , mark(0()) -> 0()
                       , a__p(s(0())) -> 0()
                       , mark^#(s(X)) -> c_7(mark^#(X))}
                  
                  Details:         
                    a) We first check the conditional [Fail]:
                       We are not considering a strict trs contains single rule TRS.
                    
                    b) We continue with the else-branch:
                       The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'':
                       'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation''
                       --------------------------------------------------------------------------------------
                       Answer:           YES(?,O(n^1))
                       Input Problem:    innermost relative runtime-complexity with respect to
                         Strict Rules:
                           {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                            , a__f(0()) -> cons(0(), f(s(0())))
                            , a__f(X) -> f(X)}
                         Weak Rules:
                           {  mark(p(X)) -> a__p(mark(X))
                            , mark(s(X)) -> s(mark(X))
                            , a__f(s(0())) -> a__f(a__p(s(0())))
                            , mark(f(X)) -> a__f(mark(X))
                            , a__p(X) -> p(X)
                            , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                            , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                            , mark(0()) -> 0()
                            , a__p(s(0())) -> 0()
                            , mark^#(s(X)) -> c_7(mark^#(X))}
                       
                       Details:         
                         The problem was solved by processor 'Matrix Interpretation':
                         'Matrix Interpretation'
                         -----------------------
                         Answer:           YES(?,O(n^1))
                         Input Problem:    innermost relative runtime-complexity with respect to
                           Strict Rules:
                             {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                              , a__f(0()) -> cons(0(), f(s(0())))
                              , a__f(X) -> f(X)}
                           Weak Rules:
                             {  mark(p(X)) -> a__p(mark(X))
                              , mark(s(X)) -> s(mark(X))
                              , a__f(s(0())) -> a__f(a__p(s(0())))
                              , mark(f(X)) -> a__f(mark(X))
                              , a__p(X) -> p(X)
                              , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                              , mark^#(p(X)) -> c_4(a__p^#(mark(X)))
                              , mark(0()) -> 0()
                              , a__p(s(0())) -> 0()
                              , mark^#(s(X)) -> c_7(mark^#(X))}
                         
                         Details:         
                           Interpretation Functions:
                            a__f(x1) = [1] x1 + [7]
                            0() = [1]
                            cons(x1, x2) = [1] x1 + [1] x2 + [1]
                            f(x1) = [1] x1 + [2]
                            s(x1) = [1] x1 + [0]
                            a__p(x1) = [1] x1 + [0]
                            mark(x1) = [4] x1 + [0]
                            p(x1) = [1] x1 + [0]
                            a__f^#(x1) = [0] x1 + [0]
                            c_0() = [0]
                            c_1(x1) = [0] x1 + [0]
                            a__p^#(x1) = [1] x1 + [0]
                            c_2() = [0]
                            mark^#(x1) = [4] x1 + [5]
                            c_3(x1) = [0] x1 + [0]
                            c_4(x1) = [1] x1 + [1]
                            c_5() = [0]
                            c_6(x1) = [1] x1 + [2]
                            c_7(x1) = [1] x1 + [0]
                            c_8() = [0]
                            c_9() = [0]
      
   6) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))
       , a__f^#(0()) -> c_0()}
      
      The usable rules for this path are the following:
      {  a__p(s(0())) -> 0()
       , mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a__p(s(0())) -> 0()
               , mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__f^#(0()) -> c_0()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__p(s(0())) -> 0()
               , mark(0()) -> 0()
               , a__p(X) -> p(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [15]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f^#(0()) -> c_0()}
            and weakly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f^#(0()) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [2]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  a__f^#(0()) -> c_0()
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [7]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [13]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [8]
                  c_7(x1) = [1] x1 + [1]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(X) -> f(X)
             , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(0()) -> c_0()
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(X) -> f(X)
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [1]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [4]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [8]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {  a__f(X) -> f(X)
             , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(0()) -> c_0()
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [7]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [11]
                  a__p(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [3]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [1]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [5]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(0()) -> cons(0(), f(s(0())))}
            and weakly orienting the rules
            {  mark^#(s(X)) -> c_7(mark^#(X))
             , a__f(X) -> f(X)
             , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__f^#(0()) -> c_0()
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(0()) -> cons(0(), f(s(0())))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [4]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [12]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [10]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(p(X)) -> a__p(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
              Weak Rules:
                {  a__f(0()) -> cons(0(), f(s(0())))
                 , mark^#(s(X)) -> c_7(mark^#(X))
                 , a__f(X) -> f(X)
                 , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , a__f^#(0()) -> c_0()
                 , a__p(s(0())) -> 0()
                 , mark(0()) -> 0()
                 , a__p(X) -> p(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(p(X)) -> a__p(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
                Weak Rules:
                  {  a__f(0()) -> cons(0(), f(s(0())))
                   , mark^#(s(X)) -> c_7(mark^#(X))
                   , a__f(X) -> f(X)
                   , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , a__f^#(0()) -> c_0()
                   , a__p(s(0())) -> 0()
                   , mark(0()) -> 0()
                   , a__p(X) -> p(X)}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , a__f_2(11) -> 4
                 , a__f_2(11) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 7
                 , 0_1() -> 9
                 , 0_2() -> 11
                 , 0_2() -> 13
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , cons_2(13, 15) -> 4
                 , cons_2(13, 15) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(11) -> 4
                 , f_2(11) -> 5
                 , f_2(12) -> 15
                 , s_0(2) -> 2
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(9) -> 8
                 , s_2(13) -> 12
                 , a__p_1(5) -> 4
                 , a__p_1(5) -> 5
                 , a__p_1(8) -> 7
                 , a__p_2(12) -> 11
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , p_0(2) -> 2
                 , p_1(5) -> 4
                 , p_1(5) -> 5
                 , p_1(8) -> 7
                 , p_2(12) -> 11
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 10
                 , a__f^#_1(7) -> 6
                 , a__f^#_2(11) -> 14
                 , c_0_0() -> 1
                 , c_0_0() -> 3
                 , c_0_1() -> 3
                 , c_0_1() -> 6
                 , c_0_1() -> 10
                 , c_0_2() -> 14
                 , c_1_1(6) -> 1
                 , c_1_1(10) -> 3
                 , c_1_2(14) -> 10
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(10) -> 1
                 , c_6_0(1) -> 1
                 , c_7_0(1) -> 1}
      
   7) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))
       , a__f^#(X) -> c_8()}
      
      The usable rules for this path are the following:
      {  a__p(s(0())) -> 0()
       , mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a__p(s(0())) -> 0()
               , mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__f^#(X) -> c_8()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)
             , a__f^#(X) -> c_8()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__p(s(0())) -> 0()
               , mark(0()) -> 0()
               , a__p(X) -> p(X)
               , a__f^#(X) -> c_8()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [1]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [1]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [6]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [8]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(X) -> f(X)
             , mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(X) -> f(X)
               , mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [8]
                  0() = [11]
                  cons(x1, x2) = [1] x1 + [1] x2 + [6]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [6]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [4]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [12]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(0()) -> cons(0(), f(s(0())))}
            and weakly orienting the rules
            {  a__f(X) -> f(X)
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(0()) -> cons(0(), f(s(0())))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [8]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [4]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [2]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [12]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [9]
                  c_7(x1) = [1] x1 + [2]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  a__f(0()) -> cons(0(), f(s(0())))
             , a__f(X) -> f(X)
             , mark^#(s(X)) -> c_7(mark^#(X))
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)
             , a__f^#(X) -> c_8()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [4]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [2]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [6]
                  c_3(x1) = [1] x1 + [5]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(p(X)) -> a__p(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
              Weak Rules:
                {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , a__f(0()) -> cons(0(), f(s(0())))
                 , a__f(X) -> f(X)
                 , mark^#(s(X)) -> c_7(mark^#(X))
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , a__p(s(0())) -> 0()
                 , mark(0()) -> 0()
                 , a__p(X) -> p(X)
                 , a__f^#(X) -> c_8()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(p(X)) -> a__p(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
                Weak Rules:
                  {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , a__f(0()) -> cons(0(), f(s(0())))
                   , a__f(X) -> f(X)
                   , mark^#(s(X)) -> c_7(mark^#(X))
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , a__p(s(0())) -> 0()
                   , mark(0()) -> 0()
                   , a__p(X) -> p(X)
                   , a__f^#(X) -> c_8()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , a__f_2(11) -> 4
                 , a__f_2(11) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 7
                 , 0_1() -> 9
                 , 0_2() -> 11
                 , 0_2() -> 13
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , cons_2(13, 15) -> 4
                 , cons_2(13, 15) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(11) -> 4
                 , f_2(11) -> 5
                 , f_2(12) -> 15
                 , s_0(2) -> 2
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(9) -> 8
                 , s_2(13) -> 12
                 , a__p_1(5) -> 4
                 , a__p_1(5) -> 5
                 , a__p_1(8) -> 7
                 , a__p_2(12) -> 11
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , p_0(2) -> 2
                 , p_1(5) -> 4
                 , p_1(5) -> 5
                 , p_1(8) -> 7
                 , p_2(12) -> 11
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 10
                 , a__f^#_1(7) -> 6
                 , a__f^#_2(11) -> 14
                 , c_1_1(6) -> 1
                 , c_1_1(10) -> 3
                 , c_1_2(14) -> 10
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(10) -> 1
                 , c_6_0(1) -> 1
                 , c_7_0(1) -> 1
                 , c_8_0() -> 1
                 , c_8_0() -> 3
                 , c_8_1() -> 6
                 , c_8_1() -> 10
                 , c_8_2() -> 14}
      
   8) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
      
      The usable rules for this path are the following:
      {  a__p(s(0())) -> 0()
       , mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  a__p(s(0())) -> 0()
               , mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__p(s(0())) -> 0()
               , mark(0()) -> 0()
               , a__p(X) -> p(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [1]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {  mark^#(s(X)) -> c_7(mark^#(X))
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [2]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [15]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__f(X) -> f(X)}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [7]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [1]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [5]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [3]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__f(0()) -> cons(0(), f(s(0())))
             , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  a__f(X) -> f(X)
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__p(s(0())) -> 0()
             , mark(0()) -> 0()
             , a__p(X) -> p(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__f(0()) -> cons(0(), f(s(0())))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [15]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [12]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [2]
                  a__p(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [1]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [1] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(p(X)) -> a__p(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__f(s(0())) -> a__f(a__p(s(0())))
                 , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
              Weak Rules:
                {  a__f(0()) -> cons(0(), f(s(0())))
                 , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , a__f(X) -> f(X)
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , mark^#(s(X)) -> c_7(mark^#(X))
                 , a__p(s(0())) -> 0()
                 , mark(0()) -> 0()
                 , a__p(X) -> p(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(p(X)) -> a__p(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__f(s(0())) -> a__f(a__p(s(0())))
                   , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))}
                Weak Rules:
                  {  a__f(0()) -> cons(0(), f(s(0())))
                   , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , a__f(X) -> f(X)
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , mark^#(s(X)) -> c_7(mark^#(X))
                   , a__p(s(0())) -> 0()
                   , mark(0()) -> 0()
                   , a__p(X) -> p(X)}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , a__f_2(11) -> 4
                 , a__f_2(11) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 7
                 , 0_1() -> 9
                 , 0_2() -> 11
                 , 0_2() -> 13
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , cons_2(13, 15) -> 4
                 , cons_2(13, 15) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(11) -> 4
                 , f_2(11) -> 5
                 , f_2(12) -> 15
                 , s_0(2) -> 2
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(9) -> 8
                 , s_2(13) -> 12
                 , a__p_1(5) -> 4
                 , a__p_1(5) -> 5
                 , a__p_1(8) -> 7
                 , a__p_2(12) -> 11
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , p_0(2) -> 2
                 , p_1(5) -> 4
                 , p_1(5) -> 5
                 , p_1(8) -> 7
                 , p_2(12) -> 11
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 10
                 , a__f^#_1(7) -> 6
                 , a__f^#_2(11) -> 14
                 , c_1_1(6) -> 1
                 , c_1_1(10) -> 3
                 , c_1_2(14) -> 10
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(10) -> 1
                 , c_6_0(1) -> 1
                 , c_7_0(1) -> 1}
      
   9) {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
       , a__f^#(0()) -> c_0()}
      
      The usable rules for this path are the following:
      {  mark(f(X)) -> a__f(mark(X))
       , mark(p(X)) -> a__p(mark(X))
       , mark(0()) -> 0()
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(s(X)) -> s(mark(X))
       , a__p(s(0())) -> 0()
       , a__p(X) -> p(X)
       , a__f(0()) -> cons(0(), f(s(0())))
       , a__f(s(0())) -> a__f(a__p(s(0())))
       , a__f(X) -> f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(f(X)) -> a__f(mark(X))
               , mark(p(X)) -> a__p(mark(X))
               , mark(0()) -> 0()
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(s(X)) -> s(mark(X))
               , a__p(s(0())) -> 0()
               , a__p(X) -> p(X)
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(s(0())) -> a__f(a__p(s(0())))
               , a__f(X) -> f(X)
               , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__f^#(0()) -> c_0()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark(0()) -> 0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark(0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
            and weakly orienting the rules
            {mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(f(X)) -> c_3(a__f^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [2]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [8]
                  c_7(x1) = [1] x1 + [10]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__f^#(0()) -> c_0()}
            and weakly orienting the rules
            {  mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__p(s(0())) -> 0()
               , mark^#(s(X)) -> c_7(mark^#(X))
               , a__f^#(0()) -> c_0()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [9]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [0]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [8]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  mark(p(X)) -> a__p(mark(X))
             , a__f(0()) -> cons(0(), f(s(0())))
             , a__f(X) -> f(X)}
            and weakly orienting the rules
            {  a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__f^#(0()) -> c_0()
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(p(X)) -> a__p(mark(X))
               , a__f(0()) -> cons(0(), f(s(0())))
               , a__f(X) -> f(X)}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [1]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [5]
                  mark(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [10]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [3]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {  mark(p(X)) -> a__p(mark(X))
             , a__f(0()) -> cons(0(), f(s(0())))
             , a__f(X) -> f(X)
             , a__p(s(0())) -> 0()
             , mark^#(s(X)) -> c_7(mark^#(X))
             , a__f^#(0()) -> c_0()
             , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [1] x1 + [8]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  f(x1) = [1] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  a__f^#(x1) = [1] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [15]
                  c_3(x1) = [1] x1 + [8]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(f(X)) -> a__f(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , mark(s(X)) -> s(mark(X))
                 , a__p(X) -> p(X)
                 , a__f(s(0())) -> a__f(a__p(s(0())))}
              Weak Rules:
                {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark(p(X)) -> a__p(mark(X))
                 , a__f(0()) -> cons(0(), f(s(0())))
                 , a__f(X) -> f(X)
                 , a__p(s(0())) -> 0()
                 , mark^#(s(X)) -> c_7(mark^#(X))
                 , a__f^#(0()) -> c_0()
                 , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                 , mark(0()) -> 0()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(f(X)) -> a__f(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , mark(s(X)) -> s(mark(X))
                   , a__p(X) -> p(X)
                   , a__f(s(0())) -> a__f(a__p(s(0())))}
                Weak Rules:
                  {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                   , mark(p(X)) -> a__p(mark(X))
                   , a__f(0()) -> cons(0(), f(s(0())))
                   , a__f(X) -> f(X)
                   , a__p(s(0())) -> 0()
                   , mark^#(s(X)) -> c_7(mark^#(X))
                   , a__f^#(0()) -> c_0()
                   , mark^#(f(X)) -> c_3(a__f^#(mark(X)))
                   , mark(0()) -> 0()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  a__f_1(5) -> 4
                 , a__f_1(5) -> 5
                 , a__f_2(7) -> 4
                 , a__f_2(7) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , 0_2() -> 7
                 , 0_2() -> 9
                 , 0_3() -> 11
                 , 0_3() -> 14
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , cons_2(9, 10) -> 4
                 , cons_2(9, 10) -> 5
                 , cons_3(11, 12) -> 4
                 , cons_3(14, 12) -> 5
                 , f_0(2) -> 2
                 , f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(7) -> 4
                 , f_2(7) -> 5
                 , f_2(8) -> 10
                 , f_3(13) -> 12
                 , s_0(2) -> 2
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_2(9) -> 8
                 , s_3(14) -> 13
                 , a__p_0(4) -> 4
                 , a__p_1(5) -> 5
                 , a__p_2(8) -> 7
                 , mark_0(2) -> 4
                 , mark_1(2) -> 5
                 , p_0(2) -> 2
                 , p_1(4) -> 4
                 , p_2(5) -> 5
                 , p_3(8) -> 7
                 , a__f^#_0(2) -> 1
                 , a__f^#_0(4) -> 3
                 , a__f^#_1(5) -> 6
                 , c_0_0() -> 1
                 , c_0_0() -> 3
                 , c_0_1() -> 3
                 , c_0_1() -> 6
                 , mark^#_0(2) -> 1
                 , c_3_0(3) -> 1
                 , c_3_1(6) -> 1
                 , c_6_0(1) -> 1
                 , c_7_0(1) -> 1}
      
   10)
      {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1) = [0] x1 + [0]
           0() = [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           f(x1) = [0] x1 + [0]
           s(x1) = [0] x1 + [0]
           a__p(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           p(x1) = [0] x1 + [0]
           a__f^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           a__p^#(x1) = [0] x1 + [0]
           c_2() = [0]
           mark^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8() = [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules:
              {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(s(X)) -> c_7(mark^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(s(X)) -> c_7(mark^#(X))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [0] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  p(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
            and weakly orienting the rules
            {mark^#(s(X)) -> c_7(mark^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  f(x1) = [0] x1 + [0]
                  s(x1) = [1] x1 + [8]
                  a__p(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  p(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [3]
                  c_7(x1) = [1] x1 + [1]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark^#(s(X)) -> c_7(mark^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   11)
      {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
       , mark^#(s(X)) -> c_7(mark^#(X))
       , mark^#(0()) -> c_5()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           a__f(x1) = [0] x1 + [0]
           0() = [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           f(x1) = [0] x1 + [0]
           s(x1) = [0] x1 + [0]
           a__p(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           p(x1) = [0] x1 + [0]
           a__f^#(x1) = [0] x1 + [0]
           c_0() = [0]
           c_1(x1) = [0] x1 + [0]
           a__p^#(x1) = [0] x1 + [0]
           c_2() = [0]
           mark^#(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5() = [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8() = [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {mark^#(0()) -> c_5()}
            Weak Rules:
              {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
               , mark^#(s(X)) -> c_7(mark^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(0()) -> c_5()}
            and weakly orienting the rules
            {  mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
             , mark^#(s(X)) -> c_7(mark^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(0()) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  a__f(x1) = [0] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  f(x1) = [0] x1 + [0]
                  s(x1) = [1] x1 + [0]
                  a__p(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  p(x1) = [0] x1 + [0]
                  a__f^#(x1) = [0] x1 + [0]
                  c_0() = [0]
                  c_1(x1) = [0] x1 + [0]
                  a__p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5() = [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8() = [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  mark^#(0()) -> c_5()
                 , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))
                 , mark^#(s(X)) -> c_7(mark^#(X))}
            
            Details:         
              The given problem does not contain any strict rules