'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^2)) Input Problem: innermost runtime-complexity with respect to Rules: { a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(X) -> f(X) , a__p(X) -> p(X)} Details: We have computed the following set of weak (innermost) dependency pairs: { a__f^#(0()) -> c_0() , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0())))) , a__p^#(s(0())) -> c_2() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark^#(0()) -> c_5() , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(X) -> c_8() , a__p^#(X) -> c_9()} The usable rules are: { a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} The estimated dependency graph contains the following edges: {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} ==> {a__f^#(X) -> c_8()} {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} ==> {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} ==> {a__f^#(0()) -> c_0()} {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} ==> {a__f^#(X) -> c_8()} {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} ==> {a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} ==> {a__f^#(0()) -> c_0()} {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} ==> {a__p^#(X) -> c_9()} {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} ==> {a__p^#(s(0())) -> c_2()} {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} ==> {mark^#(s(X)) -> c_7(mark^#(X))} {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} ==> {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} ==> {mark^#(0()) -> c_5()} {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} ==> {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} ==> {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} {mark^#(s(X)) -> c_7(mark^#(X))} ==> {mark^#(s(X)) -> c_7(mark^#(X))} {mark^#(s(X)) -> c_7(mark^#(X))} ==> {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} {mark^#(s(X)) -> c_7(mark^#(X))} ==> {mark^#(0()) -> c_5()} {mark^#(s(X)) -> c_7(mark^#(X))} ==> {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} {mark^#(s(X)) -> c_7(mark^#(X))} ==> {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} We consider the following path(s): 1) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^2)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(X) -> c_8()} Details: We apply the weight gap principle, strictly orienting the rules { mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules { mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [4] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(p(X)) -> a__p(mark(X))} and weakly orienting the rules { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(p(X)) -> a__p(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X)) -> a__f(mark(X))} and weakly orienting the rules { mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X)) -> a__f(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [12] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] f(x1) = [1] x1 + [15] s(x1) = [1] x1 + [1] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [15] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: Interpretation Functions: a__f(x1) = [1 5] x1 + [0] [0 0] [2] 0() = [0] [6] cons(x1, x2) = [1 0] x1 + [1 5] x2 + [1] [0 0] [0 0] [0] f(x1) = [1 1] x1 + [0] [0 0] [2] s(x1) = [1 1] x1 + [0] [0 1] [6] a__p(x1) = [1 0] x1 + [2] [0 0] [7] mark(x1) = [5 0] x1 + [0] [0 1] [0] p(x1) = [1 0] x1 + [1] [0 0] [7] a__f^#(x1) = [1 0] x1 + [0] [0 0] [0] c_0() = [0] [0] c_1(x1) = [0 0] x1 + [0] [0 0] [0] a__p^#(x1) = [0 0] x1 + [0] [0 0] [0] c_2() = [0] [0] mark^#(x1) = [5 0] x1 + [0] [2 6] [4] c_3(x1) = [1 0] x1 + [0] [0 0] [1] c_4(x1) = [0 0] x1 + [0] [0 0] [0] c_5() = [0] [0] c_6(x1) = [1 0] x1 + [1] [0 0] [1] c_7(x1) = [1 0] x1 + [0] [0 1] [0] c_8() = [0] [0] c_9() = [0] [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(X) -> c_8()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [4] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [2] s(x1) = [1] x1 + [1] a__p(x1) = [1] x1 + [0] mark(x1) = [4] x1 + [4] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [4] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] 2) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^2)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(X) -> c_9()} Details: We apply the weight gap principle, strictly orienting the rules { mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [1] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules { mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [4] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(p(X)) -> a__p(mark(X))} and weakly orienting the rules { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(p(X)) -> a__p(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [6] c_2() = [0] mark^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X)) -> a__f(mark(X))} and weakly orienting the rules { mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X)) -> a__f(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [12] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [9] c_2() = [0] mark^#(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [3] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] f(x1) = [1] x1 + [15] s(x1) = [1] x1 + [1] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [2] c_2() = [0] mark^#(x1) = [1] x1 + [15] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: Interpretation Functions: a__f(x1) = [1 4] x1 + [1] [0 1] [5] 0() = [0] [2] cons(x1, x2) = [1 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [4] f(x1) = [1 1] x1 + [1] [0 1] [5] s(x1) = [1 0] x1 + [0] [0 1] [4] a__p(x1) = [1 1] x1 + [1] [0 0] [4] mark(x1) = [4 1] x1 + [0] [0 1] [2] p(x1) = [1 1] x1 + [0] [0 0] [3] a__f^#(x1) = [0 0] x1 + [0] [0 0] [0] c_0() = [0] [0] c_1(x1) = [0 0] x1 + [0] [0 0] [0] a__p^#(x1) = [1 0] x1 + [3] [0 0] [0] c_2() = [0] [0] mark^#(x1) = [4 2] x1 + [1] [0 0] [2] c_3(x1) = [0 0] x1 + [0] [0 0] [0] c_4(x1) = [1 0] x1 + [2] [0 0] [1] c_5() = [0] [0] c_6(x1) = [1 4] x1 + [0] [0 0] [1] c_7(x1) = [1 0] x1 + [0] [0 0] [0] c_8() = [0] [0] c_9() = [0] [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , mark(0()) -> 0() , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(X) -> c_9()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [4] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [2] s(x1) = [1] x1 + [1] a__p(x1) = [1] x1 + [0] mark(x1) = [4] x1 + [0] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [2] c_2() = [0] mark^#(x1) = [4] x1 + [3] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] 3) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X)))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^2)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: We apply the weight gap principle, strictly orienting the rules { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [3] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [2] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [6] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [6] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X)) -> a__f(mark(X))} and weakly orienting the rules { mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X)) -> a__f(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [2] a__f^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1 6] x1 + [1] [0 0] [1] 0() = [0] [6] cons(x1, x2) = [1 0] x1 + [1 2] x2 + [1] [0 0] [0 0] [1] f(x1) = [1 3] x1 + [1] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 1] [5] a__p(x1) = [1 0] x1 + [4] [0 0] [6] mark(x1) = [2 0] x1 + [0] [0 1] [0] p(x1) = [1 0] x1 + [2] [0 0] [6] a__f^#(x1) = [1 0] x1 + [0] [0 0] [0] c_0() = [0] [0] c_1(x1) = [0 0] x1 + [0] [0 0] [0] a__p^#(x1) = [0 0] x1 + [0] [0 0] [0] c_2() = [0] [0] mark^#(x1) = [2 0] x1 + [1] [0 0] [0] c_3(x1) = [1 0] x1 + [0] [0 0] [0] c_4(x1) = [0 0] x1 + [0] [0 0] [0] c_5() = [0] [0] c_6(x1) = [1 0] x1 + [0] [0 0] [0] c_7(x1) = [1 0] x1 + [0] [0 0] [0] c_8() = [0] [0] c_9() = [0] [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [5] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [2] s(x1) = [1] x1 + [1] a__p(x1) = [1] x1 + [0] mark(x1) = [4] x1 + [4] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [4] x1 + [1] c_3(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] 4) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p^#(s(0())) -> c_2()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^2)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: We apply the weight gap principle, strictly orienting the rules { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [10] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__p(X) -> p(X)} and weakly orienting the rules { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__p(X) -> p(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [14] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [10] a__p(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [7] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} and weakly orienting the rules { a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [3] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [11] c_7(x1) = [1] x1 + [8] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark(f(X)) -> a__f(mark(X))} and weakly orienting the rules { mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(f(X)) -> a__f(mark(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [2] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [6] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [8] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [8] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [2] cons(x1, x2) = [1] x1 + [1] x2 + [1] f(x1) = [1] x1 + [14] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [15] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: Interpretation Functions: a__f(x1) = [1 0 1] x1 + [0] [0 1 1] [1] [0 0 0] [1] 0() = [0] [0] [0] cons(x1, x2) = [1 0 1] x1 + [1 0 0] x2 + [0] [0 1 1] [0 0 0] [0] [0 0 0] [0 0 0] [0] f(x1) = [1 0 0] x1 + [0] [0 1 1] [1] [0 0 0] [1] s(x1) = [1 0 0] x1 + [0] [0 1 0] [1] [0 0 0] [1] a__p(x1) = [1 0 0] x1 + [0] [0 1 0] [1] [0 0 0] [0] mark(x1) = [1 1 0] x1 + [0] [0 1 0] [0] [0 0 1] [0] p(x1) = [1 0 0] x1 + [0] [0 1 0] [1] [0 0 0] [0] a__f^#(x1) = [0 0 0] x1 + [0] [0 0 0] [0] [0 0 0] [0] c_0() = [0] [0] [0] c_1(x1) = [0 0 0] x1 + [0] [0 0 0] [0] [0 0 0] [0] a__p^#(x1) = [1 0 0] x1 + [0] [0 0 1] [0] [0 0 0] [0] c_2() = [0] [0] [0] mark^#(x1) = [1 1 0] x1 + [1] [1 1 0] [1] [0 0 0] [0] c_3(x1) = [0 0 0] x1 + [0] [0 0 0] [0] [0 0 0] [0] c_4(x1) = [1 0 0] x1 + [1] [0 0 0] [1] [0 0 0] [0] c_5() = [0] [0] [0] c_6(x1) = [1 0 0] x1 + [0] [0 1 0] [0] [0 0 0] [0] c_7(x1) = [1 0 0] x1 + [0] [0 1 0] [0] [0 0 0] [0] c_8() = [0] [0] [0] c_9() = [0] [0] [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(f(X)) -> a__f(mark(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , a__p(X) -> p(X) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__p^#(s(0())) -> c_2()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [4] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] f(x1) = [1] x1 + [1] s(x1) = [1] x1 + [1] a__p(x1) = [1] x1 + [0] mark(x1) = [4] x1 + [4] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [4] x1 + [5] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] 5) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X)))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^2)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(p(X)) -> c_4(a__p^#(mark(X)))} Details: We apply the weight gap principle, strictly orienting the rules { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [3] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} and weakly orienting the rules { mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(p(X)) -> c_4(a__p^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [2] f(x1) = [1] x1 + [1] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [6] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [4] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [6] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: The problem was solved by processor 'combine': 'combine' --------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^2)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1 1 0] x1 + [1] [0 0 0] [0] [0 1 1] [1] 0() = [0] [0] [0] cons(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0] [0 0 0] [0 0 0] [0] [0 0 1] [0 0 0] [0] f(x1) = [1 0 0] x1 + [1] [0 0 0] [0] [0 0 1] [1] s(x1) = [1 0 0] x1 + [0] [0 0 0] [1] [0 0 1] [1] a__p(x1) = [1 0 0] x1 + [0] [0 0 0] [0] [0 0 1] [1] mark(x1) = [1 0 1] x1 + [0] [0 0 0] [1] [1 0 1] [0] p(x1) = [1 0 0] x1 + [0] [0 0 0] [0] [0 0 1] [1] a__f^#(x1) = [0 0 0] x1 + [0] [0 0 0] [0] [0 0 0] [0] c_0() = [0] [0] [0] c_1(x1) = [0 0 0] x1 + [0] [0 0 0] [0] [0 0 0] [0] a__p^#(x1) = [1 0 0] x1 + [0] [0 1 0] [1] [0 0 0] [0] c_2() = [0] [0] [0] mark^#(x1) = [1 0 1] x1 + [0] [0 0 0] [1] [0 0 1] [1] c_3(x1) = [0 0 0] x1 + [0] [0 0 0] [0] [0 0 0] [0] c_4(x1) = [1 0 0] x1 + [1] [0 0 0] [1] [0 1 0] [0] c_5() = [0] [0] [0] c_6(x1) = [1 0 0] x1 + [0] [0 0 0] [1] [0 0 0] [0] c_7(x1) = [1 0 0] x1 + [0] [0 1 0] [0] [0 0 1] [0] c_8() = [0] [0] [0] c_9() = [0] [0] [0] 'sequentially if-then-else, sequentially' ----------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: 'if Check whether the TRS is strict trs contains single rule then fastest else fastest' --------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: a) We first check the conditional [Fail]: We are not considering a strict trs contains single rule TRS. b) We continue with the else-branch: The problem was solved by processor 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'': 'fastest of 'Matrix Interpretation', 'Matrix Interpretation', 'Matrix Interpretation'' -------------------------------------------------------------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: The problem was solved by processor 'Matrix Interpretation': 'Matrix Interpretation' ----------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Weak Rules: { mark(p(X)) -> a__p(mark(X)) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , mark(f(X)) -> a__f(mark(X)) , a__p(X) -> p(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(p(X)) -> c_4(a__p^#(mark(X))) , mark(0()) -> 0() , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [7] 0() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [1] f(x1) = [1] x1 + [2] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [4] x1 + [0] p(x1) = [1] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [1] x1 + [0] c_2() = [0] mark^#(x1) = [4] x1 + [5] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6(x1) = [1] x1 + [2] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] 6) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0())))) , a__f^#(0()) -> c_0()} The usable rules for this path are the following: { a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0())))) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [15] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(0()) -> c_0()} and weakly orienting the rules { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(0()) -> c_0()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [2] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { a__f^#(0()) -> c_0() , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [7] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [13] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [8] c_7(x1) = [1] x1 + [1] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(0()) -> c_0() , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [1] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [4] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [8] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules { a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(0()) -> c_0() , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [7] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [11] a__p(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [3] a__f^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [1] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [5] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(0()) -> cons(0(), f(s(0())))} and weakly orienting the rules { mark^#(s(X)) -> c_7(mark^#(X)) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(0()) -> c_0() , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(0()) -> cons(0(), f(s(0())))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [4] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [12] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [10] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} Weak Rules: { a__f(0()) -> cons(0(), f(s(0()))) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(0()) -> c_0() , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} Weak Rules: { a__f(0()) -> cons(0(), f(s(0()))) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f(X) -> f(X) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(0()) -> c_0() , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , a__f_2(11) -> 4 , a__f_2(11) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , 0_1() -> 7 , 0_1() -> 9 , 0_2() -> 11 , 0_2() -> 13 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , cons_2(13, 15) -> 4 , cons_2(13, 15) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_2(11) -> 4 , f_2(11) -> 5 , f_2(12) -> 15 , s_0(2) -> 2 , s_1(5) -> 4 , s_1(5) -> 5 , s_1(9) -> 8 , s_2(13) -> 12 , a__p_1(5) -> 4 , a__p_1(5) -> 5 , a__p_1(8) -> 7 , a__p_2(12) -> 11 , mark_0(2) -> 4 , mark_1(2) -> 5 , p_0(2) -> 2 , p_1(5) -> 4 , p_1(5) -> 5 , p_1(8) -> 7 , p_2(12) -> 11 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 10 , a__f^#_1(7) -> 6 , a__f^#_2(11) -> 14 , c_0_0() -> 1 , c_0_0() -> 3 , c_0_1() -> 3 , c_0_1() -> 6 , c_0_1() -> 10 , c_0_2() -> 14 , c_1_1(6) -> 1 , c_1_1(10) -> 3 , c_1_2(14) -> 10 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(10) -> 1 , c_6_0(1) -> 1 , c_7_0(1) -> 1} 7) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0())))) , a__f^#(X) -> c_8()} The usable rules for this path are the following: { a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0())))) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(X) -> c_8()} Details: We apply the weight gap principle, strictly orienting the rules { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [1] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [6] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [8] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(X) -> f(X) , mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(X) -> f(X) , mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [8] 0() = [11] cons(x1, x2) = [1] x1 + [1] x2 + [6] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [6] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [4] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [12] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(0()) -> cons(0(), f(s(0())))} and weakly orienting the rules { a__f(X) -> f(X) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(0()) -> cons(0(), f(s(0())))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [8] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [4] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [2] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [12] c_3(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [9] c_7(x1) = [1] x1 + [2] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [4] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [2] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [6] c_3(x1) = [1] x1 + [5] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X) , a__f^#(X) -> c_8()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , a__f_2(11) -> 4 , a__f_2(11) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , 0_1() -> 7 , 0_1() -> 9 , 0_2() -> 11 , 0_2() -> 13 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , cons_2(13, 15) -> 4 , cons_2(13, 15) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_2(11) -> 4 , f_2(11) -> 5 , f_2(12) -> 15 , s_0(2) -> 2 , s_1(5) -> 4 , s_1(5) -> 5 , s_1(9) -> 8 , s_2(13) -> 12 , a__p_1(5) -> 4 , a__p_1(5) -> 5 , a__p_1(8) -> 7 , a__p_2(12) -> 11 , mark_0(2) -> 4 , mark_1(2) -> 5 , p_0(2) -> 2 , p_1(5) -> 4 , p_1(5) -> 5 , p_1(8) -> 7 , p_2(12) -> 11 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 10 , a__f^#_1(7) -> 6 , a__f^#_2(11) -> 14 , c_1_1(6) -> 1 , c_1_1(10) -> 3 , c_1_2(14) -> 10 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(10) -> 1 , c_6_0(1) -> 1 , c_7_0(1) -> 1 , c_8_0() -> 1 , c_8_0() -> 3 , c_8_1() -> 6 , c_8_1() -> 10 , c_8_2() -> 14} 8) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} The usable rules for this path are the following: { a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__p(s(0())) -> 0() , mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} Details: We apply the weight gap principle, strictly orienting the rules { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules { a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [1] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules { mark^#(s(X)) -> c_7(mark^#(X)) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [2] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [15] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f(X) -> f(X)} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(s(X)) -> c_7(mark^#(X)) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [7] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [1] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [5] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [3] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(0()) -> cons(0(), f(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(s(X)) -> c_7(mark^#(X)) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(0()) -> cons(0(), f(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [15] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [12] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [2] a__p(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [1] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} Weak Rules: { a__f(0()) -> cons(0(), f(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(s(X)) -> c_7(mark^#(X)) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f^#(s(0())) -> c_1(a__f^#(a__p(s(0()))))} Weak Rules: { a__f(0()) -> cons(0(), f(s(0()))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(s(X)) -> c_7(mark^#(X)) , a__p(s(0())) -> 0() , mark(0()) -> 0() , a__p(X) -> p(X)} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , a__f_2(11) -> 4 , a__f_2(11) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , 0_1() -> 7 , 0_1() -> 9 , 0_2() -> 11 , 0_2() -> 13 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , cons_2(13, 15) -> 4 , cons_2(13, 15) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_2(11) -> 4 , f_2(11) -> 5 , f_2(12) -> 15 , s_0(2) -> 2 , s_1(5) -> 4 , s_1(5) -> 5 , s_1(9) -> 8 , s_2(13) -> 12 , a__p_1(5) -> 4 , a__p_1(5) -> 5 , a__p_1(8) -> 7 , a__p_2(12) -> 11 , mark_0(2) -> 4 , mark_1(2) -> 5 , p_0(2) -> 2 , p_1(5) -> 4 , p_1(5) -> 5 , p_1(8) -> 7 , p_2(12) -> 11 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 10 , a__f^#_1(7) -> 6 , a__f^#_2(11) -> 14 , c_1_1(6) -> 1 , c_1_1(10) -> 3 , c_1_2(14) -> 10 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(10) -> 1 , c_6_0(1) -> 1 , c_7_0(1) -> 1} 9) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , a__f^#(0()) -> c_0()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(p(X)) -> a__p(mark(X)) , mark(0()) -> 0() , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(s(0())) -> 0() , a__p(X) -> p(X) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(s(0())) -> a__f(a__p(s(0()))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules {mark(0()) -> 0()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(0()) -> 0()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} and weakly orienting the rules {mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_3(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [2] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [8] c_7(x1) = [1] x1 + [10] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0()} and weakly orienting the rules { mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] 0() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [9] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [0] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [8] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { mark(p(X)) -> a__p(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} and weakly orienting the rules { a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(p(X)) -> a__p(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [1] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [5] mark(x1) = [1] x1 + [1] p(x1) = [1] x1 + [10] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [3] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules { mark(p(X)) -> a__p(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [8] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [1] f(x1) = [1] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] p(x1) = [1] x1 + [8] a__f^#(x1) = [1] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [15] c_3(x1) = [1] x1 + [8] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(p(X)) -> a__p(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(s(X)) -> s(mark(X)) , a__p(X) -> p(X) , a__f(s(0())) -> a__f(a__p(s(0())))} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark(p(X)) -> a__p(mark(X)) , a__f(0()) -> cons(0(), f(s(0()))) , a__f(X) -> f(X) , a__p(s(0())) -> 0() , mark^#(s(X)) -> c_7(mark^#(X)) , a__f^#(0()) -> c_0() , mark^#(f(X)) -> c_3(a__f^#(mark(X))) , mark(0()) -> 0()} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { a__f_1(5) -> 4 , a__f_1(5) -> 5 , a__f_2(7) -> 4 , a__f_2(7) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , 0_2() -> 7 , 0_2() -> 9 , 0_3() -> 11 , 0_3() -> 14 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , cons_2(9, 10) -> 4 , cons_2(9, 10) -> 5 , cons_3(11, 12) -> 4 , cons_3(14, 12) -> 5 , f_0(2) -> 2 , f_1(5) -> 4 , f_1(5) -> 5 , f_2(7) -> 4 , f_2(7) -> 5 , f_2(8) -> 10 , f_3(13) -> 12 , s_0(2) -> 2 , s_1(5) -> 4 , s_1(5) -> 5 , s_2(9) -> 8 , s_3(14) -> 13 , a__p_0(4) -> 4 , a__p_1(5) -> 5 , a__p_2(8) -> 7 , mark_0(2) -> 4 , mark_1(2) -> 5 , p_0(2) -> 2 , p_1(4) -> 4 , p_2(5) -> 5 , p_3(8) -> 7 , a__f^#_0(2) -> 1 , a__f^#_0(4) -> 3 , a__f^#_1(5) -> 6 , c_0_0() -> 1 , c_0_0() -> 3 , c_0_1() -> 3 , c_0_1() -> 6 , mark^#_0(2) -> 1 , c_3_0(3) -> 1 , c_3_1(6) -> 1 , c_6_0(1) -> 1 , c_7_0(1) -> 1} 10) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] f(x1) = [0] x1 + [0] s(x1) = [0] x1 + [0] a__p(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8() = [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(s(X)) -> c_7(mark^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(s(X)) -> c_7(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [0] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [1] c_8() = [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} and weakly orienting the rules {mark^#(s(X)) -> c_7(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(cons(X1, X2)) -> c_6(mark^#(X1))} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [8] f(x1) = [0] x1 + [0] s(x1) = [1] x1 + [8] a__p(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [3] c_7(x1) = [1] x1 + [1] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X))} Details: The given problem does not contain any strict rules 11) { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X)) , mark^#(0()) -> c_5()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [0] x1 + [0] x2 + [0] f(x1) = [0] x1 + [0] s(x1) = [0] x1 + [0] a__p(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8() = [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(0()) -> c_5()} Weak Rules: { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(0()) -> c_5()} and weakly orienting the rules { mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(0()) -> c_5()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] 0() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] f(x1) = [0] x1 + [0] s(x1) = [1] x1 + [0] a__p(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] p(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] a__p^#(x1) = [0] x1 + [0] c_2() = [0] mark^#(x1) = [1] x1 + [1] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5() = [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [1] x1 + [0] c_8() = [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { mark^#(0()) -> c_5() , mark^#(cons(X1, X2)) -> c_6(mark^#(X1)) , mark^#(s(X)) -> c_7(mark^#(X))} Details: The given problem does not contain any strict rules